Brain cells use a telephone trick to report what they see: Single neurons communicate about multiple objects by rapidly switching which one they are reporting on
“How many fingers am I holding up?”
For vision-sensing brain cells in a monkey’s visual cortex, that answer depends on whether the digits are next to each other or partially overlapping.
A new study from Duke University finds that single neurons conveying visual information about two separate objects in sight do so by alternating signals about one or the other. When two objects overlap, however, the brain cells detect them as a single entity.
The new report is out Nov. 29 in the journal eLife.
The findings help expand what is known about how the brain makes sense of its complicated and busy world. Most research on sensory processing, be it sounds or sights, sets the bar too low by testing how brain cells react to a single tone or image.
“There are lots of reasons to keep things simple in the lab,” said Jennifer Groh, Ph.D., a faculty member of the Duke Institute for Brain Sciences and senior author of the new report. “But it means that we’re not very far along in understanding how the brain encodes more than one thing at a time.”
Making sense of complicated sensory information is somewhat of a specialty for Groh. In 2018, her lab was the first to show that single auditory brain cells efficiently transmit information about two different sounds by using something called multiplexing.
Source: Read Full Article